آزمون حافظه سیگنال سری زمانی و شبیه‌سازی فرایند بارش-رواناب با استفاده از مدل‌های شبکه عصبی و ترکیب موجک-عصبی

Authors

  • حامد عباسی استادیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان
  • حمید میرهاشمی استادیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان
  • زهره مریانجی استادیار آب و هواشناسی، دانشکده علوم انسانی و اسلامی، دانشگاه سید جمال الدین اسدآبادی
  • سعید فرزین استادیار گروه مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه سمنان
  • پیام خسروی‌نیا استادیار، دانشکده کشاورزی، دانشگاه کردستان
Abstract:

‌در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرم‌آباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرم‌آباد در بازه زمانی سال‌های 1370 تا 1393 برابر با 0.8 به‌دست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با به‌کارگیری مدل‌های شبکه عصبی و تبدیلات موجک، سری زمانی بارش-رواناب این رودخانه شبیه‌سازی شده است. در این راستا، با اتخاذ سری‌های زمانی بارش و بارش-رواناب به‌عنوان ورودی در دو الگوریتم شبکه عصبی و ترکیب موجک-عصبی، چهار مدل شامل 1) بارش، عصبی، 2) بارش-رواناب، عصبی، 3) بارش، موجک-عصبی و 4) بارش-رواناب، موجک-عصبی تولید شده است. در مدل‌های ترکیبی موجک-عصبی، سری زمانی بارش و رواناب به زیرسیگنال‌های فرکانس بالا و پایین تجزیه شده­‌اند. نتایج حاصل از ارزیابی میزان دقت و کارایی چهار مدل حاکی از آن است که مدل بارش-رواناب، موجک-عصبی با بهترین کارایی در سطح اطمینان 99 درصد، دقت بالایی در شبیه‌سازی رفتار رواناب دارد. به‌طوری که مقایسه نتایج مدل موجک-عصبی با مدل عصبی با استفاده از آزمون مرگان-گرنجر-نیوبلد، نشان از برتری معنی‌دار مدل نخست دارد. همچنین، نتایج ارزیابی سیگنال خطای چهار مدل اجرا شده با استفاده از دو آزمون نسبت وان‌نیومنو بویشاند نشان داد که یک نقطه جابه­جایی معنی‌دار در سیگنال خطای مدل عصبی و سیگنال بارش-رواناب وجود دارد. بنابراین، وجود نوسان‌های بسیار متفاوت ماهانه و دوره‌ای شامل دو دوره 1377ـ1370 و 1393ـ1378 در رفتار بارش-رواناب منجر به کاهش کارایی و ضریب دقت مدل شبکه عصبی شده است. در صورتی‌که در مدل ترکیبی موجک-عصبی با اختصاص وزن نسبی به هر زیرسیگنال، تأثیر نوسان‌های کوتاه‌ مدت، متوسط و بلند مدت در ایجاد خطای مدل‌سازی به‌نحو مؤثری کاهش یافته است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...

full text

بررسی تغییرات زمانی بارش در استان همدان با استفاده از مدلهای آماری و شبکه عصبی مصنوعی

تغییر اقلیم یکی از معضلهای کنونی جامعه بشری است و تهدید و بلای سیاره زمین به شمار میآید افزایش دمای کره زمین سبب تغییرات ژرف و وسیع در اقلیمهای زمین شده و باعثبروز تغییراتی در زمان و مکان بارش می شود که آسیبهای بسیاری را خصوصاً در دهه اخیر وارد کرده است. در این راستا این پژوهش با شناخت تغییرات و روند فصل و دوره بارش در گذشته به الگوهای مؤثر بارش در بازههای مختلف زمانی میپردازد و پیش بینی تغییرات...

full text

بررسی تغییرات زمانی بارش در استان همدان با استفاده از مدلهای آماری و شبکه عصبی مصنوعی

تغییر اقلیم یکی از معضلهای کنونی جامعه بشری است و تهدید و بلای سیاره زمین به شمار میآید افزایش دمای کره زمین سبب تغییرات ژرف و وسیع در اقلیمهای زمین شده و باعثبروز تغییراتی در زمان و مکان بارش می شود که آسیبهای بسیاری را خصوصاً در دهه اخیر وارد کرده است. در این راستا این پژوهش با شناخت تغییرات و روند فصل و دوره بارش در گذشته به الگوهای مؤثر بارش در بازههای مختلف زمانی میپردازد و پیش بینی تغییرات...

full text

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

پیش‌بینی تراز آب دریاچه ارومیه با استفاده از روش‌های سری زمانی، شبکه عصبی مصنوعی و شبکه عصبی- موجکی

دریاچه ارومیه دومین دریاچه شور جهان است و با توجه به معیارهای اجتماعی- اقتصادی و زیست محیطی نقش مهمی در منطقه شمال­غرب ایران دارد که در سالهای اخیر با مشکلاتی مواجه شده است و به دلیل خشکسالی، استفاده بیش از حد آب­های سطحی و ساخت سدها تراز سطح آب آن کاهش یافته است. یکی از فاکتورهای مهم که در مدیریت صحیح در هر زمینه­ای، تأثیر دارد، داشتن یک دید و نگرش مناسب از اتفاقات آینده در آن زمینه...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  0- 0

publication date 2019-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023